Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Critical care explorations ; 4(12), 2022.
Article in English | EuropePMC | ID: covidwho-2147443

ABSTRACT

IMPORTANCE: Multistate models yield high-fidelity analyses of the dynamic state transition and temporal dimensions of a clinical condition’s natural history, offering superiority over aggregate modeling techniques for addressing these types of problems. OBJECTIVES: To demonstrate the utility of these models in critical care, we examined acute kidney injury (AKI) development, progression, and outcomes in COVID-19 critical illness through multistate analyses. DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study at an urban tertiary-care academic hospital in the United States. All patients greater than or equal to 18 years in an ICU with COVID-19 in 2020, excluding patients with preexisting end-stage renal disease. MAIN OUTCOMES AND MEASURES: Using electronic health record data, we determined AKI presence/stage in discrete 12-hour time windows and fit multistate models to determine longitudinal transitions and outcomes. RESULTS: Of 367 encounters, 241 (66%) experienced AKI (maximal stages: 88 stage-1, 49 stage-2, 104 stage-3 AKI [51 received renal replacement therapy (RRT), 53 did not]). Patients receiving RRT overwhelmingly received invasive mechanical ventilation (IMV) (n = 60, 95%) compared with the AKI-without-RRT (n = 98, 53%) and no-AKI groups (n = 39, 32%;p < 0.001), with similar mortality patterns (RRT: n = 36, 57%;AKI: n = 74, 40%;non-AKI: n = 23, 19%;p < 0.001). After 24 hours in the ICU, almost half the cohort had AKI (44.9%;95% CI, 41.6–48.2%). At 7 days after stage-1 AKI, 74.0% (63.6–84.4) were AKI-free or discharged. By contrast, fewer patients experiencing stage-3 AKI were recovered (30.0% [24.1–35.8%]) or discharged (7.9% [5.2–10.7%]) after 7 days. Early AKI occurred with similar frequency in patients receiving and not receiving IMV: after 24 hours in the ICU, 20.9% of patients (18.3–23.6%) had AKI and IMV, while 23.4% (20.6–26.2%) had AKI without IMV. CONCLUSIONS AND RELEVANCE: In a multistate analysis of critically ill patients with COVID-19, AKI occurred early and heterogeneously in the course of critical illness. Multistate methods are useful and underused in ICU care delivery science as tools for understanding trajectories, prognoses, and resource needs.

2.
EBioMedicine ; 85: 104295, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2104816

ABSTRACT

BACKGROUND: A comparison of pneumonias due to SARS-CoV-2 and influenza, in terms of clinical course and predictors of outcomes, might inform prognosis and resource management. We aimed to compare clinical course and outcome predictors in SARS-CoV-2 and influenza pneumonia using multi-state modelling and supervised machine learning on clinical data among hospitalised patients. METHODS: This multicenter retrospective cohort study of patients hospitalised with SARS-CoV-2 (March-December 2020) or influenza (Jan 2015-March 2020) pneumonia had the composite of hospital mortality and hospice discharge as the primary outcome. Multi-state models compared differences in oxygenation/ventilatory utilisation between pneumonias longitudinally throughout hospitalisation. Differences in predictors of outcome were modelled using supervised machine learning classifiers. FINDINGS: Among 2,529 hospitalisations with SARS-CoV-2 and 2,256 with influenza pneumonia, the primary outcome occurred in 21% and 9%, respectively. Multi-state models differentiated oxygen requirement progression between viruses, with SARS-CoV-2 manifesting rapidly-escalating early hypoxemia. Highly contributory classifier variables for the primary outcome differed substantially between viruses. INTERPRETATION: SARS-CoV-2 and influenza pneumonia differ in presentation, hospital course, and outcome predictors. These pathogen-specific differential responses in viral pneumonias suggest distinct management approaches should be investigated. FUNDING: This project was supported by NIH/NCATS UL1 TR002345, NIH/NCATS KL2 TR002346 (PGL), the Doris Duke Charitable Foundation grant 2015215 (PGL), NIH/NHLBI R35 HL140026 (CSC), and a Big Ideas Award from the BJC HealthCare and Washington University School of Medicine Healthcare Innovation Lab and NIH/NIGMS R35 GM142992 (PS).


Subject(s)
COVID-19 , Influenza, Human , Pneumonia, Viral , Humans , SARS-CoV-2 , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Retrospective Studies , Hospitals
3.
Lancet Respir Med ; 9(12): 1377-1386, 2021 12.
Article in English | MEDLINE | ID: covidwho-2076878

ABSTRACT

BACKGROUND: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) have been postulated to present with distinct respiratory subphenotypes. However, most phenotyping schema have been limited by sample size, disregard for temporal dynamics, and insufficient validation. We aimed to identify respiratory subphenotypes of COVID-19-related ARDS using unbiased data-driven approaches. METHODS: PRoVENT-COVID was an investigator-initiated, national, multicentre, prospective, observational cohort study at 22 intensive care units (ICUs) in the Netherlands. Consecutive patients who had received invasive mechanical ventilation for COVID-19 (aged 18 years or older) served as the derivation cohort, and similar patients from two ICUs in the USA served as the replication cohorts. COVID-19 was confirmed by positive RT-PCR. We used latent class analysis to identify subphenotypes using clinically available respiratory data cross-sectionally at baseline, and longitudinally using 8-hourly data from the first 4 days of invasive ventilation. We used group-based trajectory modelling to evaluate trajectories of individual variables and to facilitate potential clinical translation. The PRoVENT-COVID study is registered with ClinicalTrials.gov, NCT04346342. FINDINGS: Between March 1, 2020, and May 15, 2020, 1007 patients were admitted to participating ICUs in the Netherlands, and included in the derivation cohort. Data for 288 patients were included in replication cohort 1 and 326 in replication cohort 2. Cross-sectional latent class analysis did not identify any underlying subphenotypes. Longitudinal latent class analysis identified two distinct subphenotypes. Subphenotype 2 was characterised by higher mechanical power, minute ventilation, and ventilatory ratio over the first 4 days of invasive mechanical ventilation than subphenotype 1, but PaO2/FiO2, pH, and compliance of the respiratory system did not differ between the two subphenotypes. 185 (28%) of 671 patients with subphenotype 1 and 109 (32%) of 336 patients with subphenotype 2 had died at day 28 (p=0·10). However, patients with subphenotype 2 had fewer ventilator-free days at day 28 (median 0, IQR 0-15 vs 5, 0-17; p=0·016) and more frequent venous thrombotic events (109 [32%] of 336 patients vs 176 [26%] of 671 patients; p=0·048) compared with subphenotype 1. Group-based trajectory modelling revealed trajectories of ventilatory ratio and mechanical power with similar dynamics to those observed in latent class analysis-derived trajectory subphenotypes. The two trajectories were: a stable value for ventilatory ratio or mechanical power over the first 4 days of invasive mechanical ventilation (trajectory A) or an upward trajectory (trajectory B). However, upward trajectories were better independent prognosticators for 28-day mortality (OR 1·64, 95% CI 1·17-2·29 for ventilatory ratio; 1·82, 1·24-2·66 for mechanical power). The association between upward ventilatory ratio trajectories (trajectory B) and 28-day mortality was confirmed in the replication cohorts (OR 4·65, 95% CI 1·87-11·6 for ventilatory ratio in replication cohort 1; 1·89, 1·05-3·37 for ventilatory ratio in replication cohort 2). INTERPRETATION: At baseline, COVID-19-related ARDS has no consistent respiratory subphenotype. Patients diverged from a fairly homogenous to a more heterogeneous population, with trajectories of ventilatory ratio and mechanical power being the most discriminatory. Modelling these parameters alone provided prognostic value for duration of mechanical ventilation and mortality. FUNDING: Amsterdam UMC.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Aged , COVID-19/complications , Cross-Sectional Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Netherlands , Prospective Studies , Respiration, Artificial , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL